skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reid, Alan W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Let $$M$$ be a compact 3-manifold and $$\Gamma =\pi _1(M)$$. Work by Thurston and Culler–Shalen established the $${\operatorname{\textrm{SL}}}_2({\mathbb{C}})$$ character variety $$X(\Gamma )$$ as fundamental tool in the study of the geometry and topology of $$M$$. This is particularly the case when $$M$$ is the exterior of a hyperbolic knot $$K$$ in $S^3$. The main goals of this paper are to bring to bear tools from algebraic and arithmetic geometry to understand algebraic and number theoretic properties of the so-called canonical component of $$X(\Gamma )$$, as well as distinguished points on the canonical component, when $$\Gamma $$ is a knot group. In particular, we study how the theory of quaternion Azumaya algebras can be used to obtain algebraic and arithmetic information about Dehn surgeries, and perhaps of most interest, to construct new knot invariants that lie in the Brauer groups of curves over number fields. 
    more » « less