- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Reid, Alan W (3)
-
Chu, Michelle (2)
-
Chinburg, Ted (1)
-
Kontorovich, Alex (1)
-
Long, Darren D. (1)
-
Lubotzky, Alexander (1)
-
Reid, Alan W. (1)
-
Stover, Matthew (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chu, Michelle; Reid, Alan W (, Algebraic & Geometric Topology)
-
Chinburg, Ted; Reid, Alan W; Stover, Matthew (, International Mathematics Research Notices)Abstract Let $$M$$ be a compact 3-manifold and $$\Gamma =\pi _1(M)$$. Work by Thurston and Culler–Shalen established the $${\operatorname{\textrm{SL}}}_2({\mathbb{C}})$$ character variety $$X(\Gamma )$$ as fundamental tool in the study of the geometry and topology of $$M$$. This is particularly the case when $$M$$ is the exterior of a hyperbolic knot $$K$$ in $S^3$. The main goals of this paper are to bring to bear tools from algebraic and arithmetic geometry to understand algebraic and number theoretic properties of the so-called canonical component of $$X(\Gamma )$$, as well as distinguished points on the canonical component, when $$\Gamma $$ is a knot group. In particular, we study how the theory of quaternion Azumaya algebras can be used to obtain algebraic and arithmetic information about Dehn surgeries, and perhaps of most interest, to construct new knot invariants that lie in the Brauer groups of curves over number fields.more » « less
-
Kontorovich, Alex; Long, Darren D.; Lubotzky, Alexander; Reid, Alan W. (, Notices of the American Mathematical Society)
An official website of the United States government
